If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2-20t+800=0
a = -16; b = -20; c = +800;
Δ = b2-4ac
Δ = -202-4·(-16)·800
Δ = 51600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{51600}=\sqrt{400*129}=\sqrt{400}*\sqrt{129}=20\sqrt{129}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20\sqrt{129}}{2*-16}=\frac{20-20\sqrt{129}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20\sqrt{129}}{2*-16}=\frac{20+20\sqrt{129}}{-32} $
| 3/4(6x-1)-3x=1/4(2x-1) | | 2.3x4.6= | | u-9=45 | | (a+2)-1=17 | | x+(x-10000)=55000 | | 15r-2=90 | | 8x-3(4+2x)=5x–15 | | 12^x=(1/144) | | m/6-21=-18 | | -4(y-4)=-2y-4 | | d²+2d=0 | | 14-8x=x+4 | | 5/4v+4+1/3v=8 | | 3x(-12)(-15)=3 | | 7x-2x+7=2 | | 194=-4x-3(6x+16) | | w+33=51 | | x/(-7)=-32 | | 3(w-2)+3=4w-8 | | 2x+13=35= | | 11+-8v=-69 | | 8x–3(4+2x)=5x–15 | | x+(x+10000)=55000 | | 5(2x−9)=−15 | | 2+x=0,4 | | 4p+8=3p+28 | | 13-6-6m+8m=2m+4+3 | | 8(p+30)=96 | | 20=5+9x-4-12x | | 2(2x-5)=-6(-3+4x) | | 7x-11=-74 | | 5y+-14=2y+-12 |